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MAXIM Interferometer Tolerances and Tradeoffs


Ann Shipleya, Webster Casha, Keith Gendreaub, and Dennis Gallagherc
a University of Colorado, bNASA/Goddard Space Flight Center, cBall Aerospace
Maxim (Micro-Arcsecond X-ray Imaging Mission) consists of thirty-two individual grazing incidence interferometer channels that act, in combination, like a high-resolution imaging telescope.  In this paper, we will describe an optical design for Maxim and calculate principal optical tolerances.  These tolerances offer advantages that make anticipated engineering challenges more soluble and affordable within the limitations of current technology.  We also discuss key design tradeoffs that contribute to a preliminary tolerance budget.
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1. INTRODUCTION

MAXIM has the potential to image the x-ray sky at the micro-arcsecond level and is part of the advanced planning for NASA’s Structure and Evolution of the Universe Space Science theme.1  A Pathfinder mission is also under study that will be capable of 100 micro-arcsecond resolution.2,3,4  Imaging resolutions at these levels can open the door to understanding fundamental phenomena hidden in an accretion disk and even at the event horizon of a black hole.5,6  

As we continue our work in grazing incidence x-ray interferometry, variations of the optical configuration continue to evolve.

Since we first demonstrated x-ray interference fringes using an optical design we call the “X-configuration” (see Figure 1) we have carefully evaluated alignment tolerances, subsystem requirements, and estimated costs to develop a mission.7,8,9,10  In this paper, we will discuss the most recent changes to the interferometer optical design, evaluate tolerances, and present advantages the new “periscope configuration” offers.
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2. Periscope configuration

The periscope interferometer configuration creates two diffraction limited wavefronts and mixes them at a detector in a similar fashion to the X-configuration interferometer.  Each periscope module contains a collecting primary mirror and a secondary mirror to steer the beam onto the detector.  Figure 2 shows a plane wavefront from infinity projected onto a flat primary mirror in each of two periscope modules.  The wavefront is then reflected onto a second flat within each periscope module and steered so that the two beams converge at the detector plane to create interference fringes.
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Figure 3 shows one periscope module with its two flat mirrors mounted onto a platform.  The primary mirror is provided with control of three degrees of freedom for alignment, while the secondary mirror is mounted in a stationary position on the optical bench.  The entire module will also require alignment capability in roll, pitch, and yaw rotations at the interferometer level.  Rotational alignment mechanisms for the entire module are not illustrated in Figure 3.
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Figure 3:  Periscope configuration mirror module[image: image10.wmf](
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3. principal optical tolerances
In this section we derive equations to describe the amount of allowable error in the position of a periscope module.  The interferometer’s performance is dependent upon maintaining phase information of x-rays at the focal plane after they pass through each periscope module.  The distance each x-ray travels from the time it reflects off the primary mirror and passes through the periscope module onto the detector is defined as its pathlength.  Phase information is controlled in this analysis by defining a limitation on the pathlength difference between module channels.  We set this pathlength difference limit at one tenth of an x-ray wavelength.
3.1 Module X-direction sensitivity
Lateral motion of one periscope module in the X-direction causes a phase change at the focal plane.  The diagram in Figure 4 represents a plane wavefront reflecting through two periscope modules at grazing incidence and projected onto a focal plane.  One periscope module is moved a distance  out of position in the –X direction.  This causes the exit beam to also shift by a distance  consequently resulting in an optical path difference (OPD) of sin.  The quantity sin is approximately half the baseline (D) divided by the focal length (F).  If we limit the OPD to xray/10, the allowable lateral error  becomes F/5D.
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3.2 Module Y-direction lateral sensitivity
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Periscope module position errors in the Y-direction do not cause a phase change at the focal plane.  Theoretically, the module could drift any distance in the Y-direction as long as the angle to the target is still within line of sight.  For practical purposes we set a limit at one tenth the mirror width.  The mirror width is taken as a function of the mirror length (m) in order to preserve a square projected aperture.  Therefore, we define the mirror width as msin(g), where g is the graze angle between the incoming beam and the primary mirror.  As a result, the allowable motion becomes =msin(g)/10 or about ±1mm for a 30cm long mirror.

3.3 Module Z-direction lateral sensitivity
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Translation of one periscope module in the Z-direction changes the optical pathlength in that channel and consequently causes a phase change at the focal plane.  If one module is shifted in the Z-direction its optical pathlength increases by  where the incoming beam strikes the primary mirror.  At the same time the pathlength is decreased by cos near the focal plane as shown in Figure 6.  Therefore, the optical path difference is the sum of the two pathlength changes:  cos  This equation can be reduced algebraically by factoring out and applying a series expansion to cos.  We limit the OPD < xray/10 and solve for .  A simple substitution for  yields our final result:  <4F2/5D2.
3.4 Module X-axis Rotation Sensitivity (yaw error)
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A yaw rotation, , of the periscope module about the center point between its flats does not cause a phase change at the focal plane.  However, this type of rotation error can reduce the amount of light reflected through the periscope.  In this analysis, we limit the rotation such that the projection of light reflected from the primary mirror will fill 90% of the secondary mirror thickness.  The mirror edge translates some amount, , when the module is rotated about its X-axis by an angle .   The distance  is defined as msinwhere m is the length of a mirror.  Next, we limit the translation error to one tenth the thickness of a mirror:  msin(g), where g is the graze angle between the incoming beam and the mirror.  A simple substitution for  leads us to the conclusion that a yaw error should be limited to no more than one tenth of the graze angle. 
3.5 Module Y-rotation Sensitivity (pitch error)
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Rotation of a periscope module about its Y-axis induces a pathlength change within the module, and therefore, a phase change at the focal plane.  Figure 8 shows a periscope module that is rotated about the midpoint of ray L2 (halfway between the two mirrors).  The wavefront travels along incoming ray L1 from the source to the primary mirror, is reflected from the primary as ray L2 onto the secondary mirror, and follows outgoing ray L3 reflected from the secondary mirror onto the detector.  Rays L1, L2, and L3 each reflect from the mirrors at graze angle 1.  The distance, h, between the mirrors represents the closest proximity the mirrors may have to one another without vignetting the reflected beam. If the distance between the mirrors is held constant and the mirror set is rotated by an angle about the midpoint of L2, the pathlength will change.  The new path is represented by heavy dashed lines, and the new graze angle is defined as 2.
Figure 9 shows how we derive the equation to represent allowable pitch error for a periscope module rotated as described above.  The diagram in this figure is simplified to represent a general case for the pathlength.  We define this pathlength, P, as the sum of the incoming ray L1,, internal reflection ray L2, and outgoing ray L3.  A vertical reference line is perpendicular to incoming ray L1 and d1 represents the extra distance L1 would have to travel to reach the reference line.   L1* is the total distance from the source to the reference line.  The circumstance for L3 is the same as L1, and the length of L2 is h/sin.  The actual lengths of L1* and L3* are not important and we take them to zero.  If we sum L1, L2, and L3 we quantify the pathlength as (h/sin)(1-cos2).  We can find an optical path difference by using the information we defined in Figure 8.  The variable h was defined above as a constant during a pitch rotation, but the graze angle, , changes.  Therefore, we can find the OPD by applying 1 and 2 to the pathlength equation and taking the difference between them.  Next, we simplify by applying a series expansion to the cos2 terms.  Since the graze angle is small we can further simplify by assigning each Sin is approximately equal to its respective .  Additionally, the difference 2-1 is shown in Figure 8 to be equal to the pitch error angle .  The OPD is now reduced to the quantity 2h.  If we restrict the OPD to be less than /10, we can define </20h.  A final substitution puts h in terms of the mirror length and graze angle:  </20msin.
[image: image16.wmf])

(

sin

)

cos(

g

20

g

2

2

l

d

£


3.6 Module Z-rotation Sensitivity (roll error)

A module roll about its Z-axis causes a rotation and shift of the interference fringes at the focal plane.  Figure 10 shows how a rotation, , of one module about the center point between its two flats creates a displacement of the projected aperture at the focal plane.  In the X-Y plane, the reflected beam follows an arc of radius D/2, and its displacement, , at the focal plane is defined as Dsin/2.  The resulting fringe shift, , is shown in the magnified circle of Figure 9 and has length sin.  The optical path difference is the sin projection of  onto the Z-X plane:  OPD=sinsin.  If we limit the optical path difference to one tenth an x-ray wavelength and redefine sin in terms of the system baseline (D) and focal length (F),  must be less than F/5Dsin.  Finally, we substitute our original definition for  into this equation and solve for .
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4. configuration Tradeoffs
The periscope optical configuration offers several advantages over our original X-configuration.  First, the periscope design offers redundancy between modules.  This is good for two reasons:  it is very cost effective to build identical components, and redundant components in a system reduce operational risk.  Our thirty-two channel interferometer design includes several periscope modules on each spacecraft.  The operational loss of one module would somewhat degrade the image at the detector, but would not cause a loss of the mission.  Another advantage the periscope design offers is relaxation of some positional stability tolerances required for formation flying.  In order to achieve our high-resolution goal, both optical designs require a large baseline in the interferometer.  The required distance between primary mirrors may vary between 2 meters to 200 meters.  Large distances between optics and the ability to vary resolution capability based on a change in baseline makes formation flying an attractive alternative in the mission design.  Decidedly, the easiest possible attitude control and stability requirements are very desirable for this mission.  In the X-configuration design primary mirrors formation fly separately, while the secondary mirrors are all mounted together on another spacecraft.  This configuration forces each primary mirror spacecraft to maintain stability required for a single mirror in the system.  In this section we will show that spacecraft stability in both the X and Z translations would be extremely challenging to maintain.  However, the same mirror stability is reasonable to maintain within a single periscope module.  The module concept also provides flexibility to allow for varied spacing between an aligned pair of primary and secondary mirrors.  In effect, we can create a delay line by applying a high-resolution actuator to the X-direction spacing between mirrors.  A delay line can be used to correct for pathlength differences attributed to the location of a periscope module within the interferometer array.  This simple alignment capability enhances the system by allowing for a better distribution of periscope modules across the UV plane and ultimately reduces the energy resolution requirements on the detector.2    
One tradeoff that we make in choosing the periscope design is a loss of magnification at the focal plane.  The distance between the detector and optics is driven in both designs by the number of pixels per fringe width at the focal plane.  Good image resolution requires that the width of each interference fringe be covered by several pixels on the detector.  Although the use of flat mirrors has several advantages in this application, one disadvantage is that magnification at the focal plane is not very great.   Distances in each design range from hundreds of meters to hundreds of kilometers and therefore require the detector be mounted on a separate spacecraft.  The X-configuration beams cross and approach the focal plane in a quasi-parallel nature that causes fringe amplification.  Periscope module beams do not cross before arriving at the detector, but approach at a smaller angle resulting in lower magnification.  This means the periscope design dictates that the detector must formation fly a longer distance from the optics.  A larger distance between formation flying spacecraft can make communication and metrology more complicated.  However, we feel this is a soluble problem and worth the periscope design gain in formation flying position.  Although the periscope design offers relief in positional stability requirements, it does not appear to offer the same advantage in module pointing.  We discuss periscope rotational stability and phase sensitivity later in this section. 
4.1 Mirror Tolerances
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In a previous paper we derived the equations shown in Table 1.4   Each equation represents the maximum mirror position error allowable if the optical path difference is limited to xray/10.  The analytic solution column quantifies allowable error based on each equation, and the raytrace column lists results from an analysis of mirror errors that were performed at Ball Aerospace.  The raytrace model consists of thirty-two periscope modules arranged in a circular array with a 1.4m diameter baseline.  A uniformly random error was applied to each degree of freedom in one mirror from each periscope module and optical sensitivities were derived using a Monte Carlo approach.  Several runs were averaged and the tolerance for each error type was varied to derive a system sensitivity curve for each error source.  Allowable error in the raytrace results is limited at an 80% relative Strehl ratio.  This ratio is defined as the peak intensity of a perturbed system divided by the peak intensity of a point source with a perfectly aligned no-loss system.  Errors in the linear Y-direction and rotation about the X-axis are not modeled in the raytrace because they do not induce phase errors in the system and are only limited by the clear aperture.
4.2 Periscope Module Tolerances and Advantages
The principal optical module tolerances derived in section 3.0 of this paper are assembled in Table 2 next to the mirror tolerances for comparison.  The tolerances for each case have been calculated using parameters currently defined for the MAXIM pathfinder mission.2,3,4  Table 2 clearly illustrates the periscope design tolerance advantages in several degrees of freedom.  The linear stability required for mirrors in both the X and Z directions is very tight in the nanometer range.  This tolerance is challenging, but within the grasp of current technology if the mirrors can be mounted on a single optical bench or periscope module.  However, nanometer range stability would be required for each spacecraft carrying a primary mirror in the X-configuration design.  A periscope module must be held within ±20m in the X-direction:  still a difficult task, but within reach in the near future.  The Z-direction stability requirement for a periscope module is significantly relaxed from ±41nm to eight meters!  Additionally, the range of allowable roll is brought from an arc-minute for mirrors up to one quarter of a degree for a module.  Unfortunately, the periscope design does not offer relaxed tolerances in all degrees of freedom.  Yaw is tightened by a factor of two, but still remains at a reasonable level.  Our tightest and most difficult pointing challenge remains at the arcsecond level in pitch rotation.  Despite all the advantages the periscope design has to offer, it does not compensate for phase sensitivity associated with pitch error.  Nonetheless, the periscope configuration is a clear improvement as we progress toward our goal of establishing a successful formation flying mission.  The application of these tolerances at the mission level is discussed in detail by Gendreau et al.2

[image: image2]
5.  CONCLUSION

A direct comparison of tolerances from the original X-configuration and new periscope design lead to the conclusion that the new design is clearly superior.  We provided a thorough review of module tolerances outlining how the periscope design works and why many of the tolerances are relaxed.  Mirror tolerances from a previous paper have been verified with an independent raytrace and yielded excellent results.  Yet, the final analysis comes down to phase sensitivity due to pitch error. Despite all the advantages that the periscope design has to offer, the pitch error requirement remains at the milli-arcsecond level.  We are currently working to improve the optical design further to relax the pitch error requirement.  Some current ideas include an active delay control, additional mirrors within a module, and reducing the size and separation of the mirrors.
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Figure 2:  Grazing incidence interferometer periscope configuration.





DOF�
Equation�
Analytic�
Raytrace�
�
X�
� EMBED Equation.3  ����
±1.7nm�
± 2nm�
�
Y�
� EMBED Equation.3  ����
± 3mm�
Not modeled�
�
Z�
� EMBED Equation.3  ����
± 49nm�
± 70nm�
�
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� EMBED Equation.3  ����
± 0.4°�
Not modeled�
�
Y-rotation�
� EMBED Equation.3  ����
± 1.8 marcsec�
± 2marcsec�
�
Z-rotation�
� EMBED Equation.3  ����
± 59 marcsec�
±60marcsec�
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Table 1:  Mirror Position Tolerances where =20Å, g = 2°, m = 83cm, and L = 400km.











Figure 7:  X-rotation “yaw error”
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� EMBED Equation.3  ����
±2.3


marcsec�
± 1


marcsec�
�
Z-rotation
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� EMBED Equation.3  ����
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�



Table 2:  Periscope Module and Mirror Tolerances where =10Å, D=2m, F=L=200km, m=30cm, g=2°.
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Figure 6:  Z-direction lateral error
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Figure 5:  Y-direction error








Figure 4:  X-direction allowable error








Figure 10:  Z-rotation “roll error”.  Fringe shift due to rotation of the fringe plane.











Figure 1: Grazing incidence x-ray interferometer “X-configuration”





� EMBED Equation.3  ���





L3*





L1*





h





2





Ref.





Detector





Source





L3





L1





Z





X





d3





L2





d1












































Figure 8:  Module Y-rotation “pitch” error diagram
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